EXERCICE 1:

$$A = (-6) \times 7 - (-2) \times 9 + 4 \times (-3)^{2}$$

$$A = -42 - (-18) + 4 \times 9$$

$$C = -42 + 18 + 36$$

$$C = -42 + 54$$

$$B = 4 \times (-6 - 8 \times 2) : (-12 + 0,5 \times 4)$$

$$B = 4 \times (-6 - 16) : (-12 + 2)$$

$$B = 4 \times (-22) : (-10)$$

$$B = -88 : (-10)$$

$$B = 8,8$$

EXERCICE 2:

- 1. Julie a écrit 675 = $3 \times 5 \times 45$.
- 2. 45 admet au moins 3 diviseurs (1, lui-même et 5...). Il n'est pas un nombre premier. Ce n'est pas une décomposition en produits de facteurs premiers.
- 3. $675 = 3 \times 5 \times 45 = 3 \times 5 \times 5 \times 3 \times 3 = 3^3 \times 5^2$

EXERCICE 3:

- 1. 412 est un nombre pair, il n'est pas premier.
- **2**. : 23;1;71;625;29;2 et 63,
 - 23, 71; 29 et 2 sont premiers.
 - 625 n'est pas premier car son chiffre des unités est 5 : il est donc divisible par 5.
 - 1+5+3=9. 153 est divisible par 9, il n'est pas premier.
 - 1 n'est pas un nombre premier, il n'a qu'un diviseur.
- 3. Il n'y a qu'un nombre premier pair, c'est 2.
 - Tous les autres nombres pairs sont divisibles par 2. Ils ne sont donc pas premiers.

EXERCICE 4:

Le côté le plus long est SH.

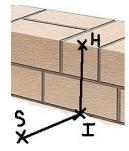
D'une part :

$$SH^2 = 95^2 = 9025$$

D'autre part :

$$SI^2 + IH^2 = 80^2 + 60^2$$

= $6400 + 3600$
= 10000



On constate que $SH^2 \neq SI^2 + IH^2$.

Donc d'après la contraposée du théorème de Pythagore, le triangle SHI n'est pas rectangle. Le mur de Ben n'est donc pas droit.

EXERCICE 5:

1. $126 = 1 \times 126$ $126 = 2 \times 63$ $126 = 3 \times 42$ $126 = 6 \times 21$ $126 = 7 \times 18$ $126 = 9 \times 14$ Les diviseurs de 126 sont : 1; 2; 3; 6; 7; 9; 14; 18; 21; 42; 63; 126

$$90 = 1 \times 90$$
 $90 = 2 \times 45$ $90 = 3 \times 30$ $90 = 5 \times 18$ $90 = 6 \times 15$ $90 = 9 \times 10$

Les diviseurs de 90 sont : 1 ; 2 ; 3 ; 5 ; 6 ; 9 ; 10 ; 15 ; 18 ; 30 ; 45 ; 90...

- 2. Le plus grand diviseur commun à 126 et 90 est 18.
- 3. a- Il pourra faire 18 paquets identiques.

b-
$$126 \div 18 = 7 \ et \ 90 \div 18 = 5$$

Dans chaque paquets: il y aura 7 billes et 15 calots.

EXERCICE 6:

1. Dans le triangle ABC est rectangle en B., j'applique le théorème de Pythagore :

Si ABC est rectangle en B, alors
$$AC^2 = AB^2 + BC^2$$

$$AC^2 = 80^2 + 60^2$$

$$AC^2 = 6400 + 3600$$

$$AC^2 = 10000$$

$$AC = \sqrt{10000}$$

$$AC = 100$$
.

La longueur AC vaut 100 m.

2. Dans le triangle ACD est rectangle en D., j'applique le théorème de Pythagore :

Si ACD est rectangle en D, alors
$$AC^2 = AD^2 + DC^2$$

$$100^2 = 28^2 + DC^2$$

$$10\ 000 = 784 + DC^2$$

$$DC^2 = 10000 - 784$$

$$DC^2 = 9216$$

$$DC = \sqrt{9216}$$

La longueur DC vaut 96 m.

3. Je calcule la longueur totale du parcours :

Le narcours mesure 264 m

4.	Je calcule le nombre de tours complets :
	Les élèves vont faire 5 tours complet.

e parcours mesure 264 m.										
		1	4	0	0		2	6	4	_
	-	1	3	2	0		5			
e calcule le nombre de tours complets :			0	8	0					
es élèves vont faire 5 tours complet.										

5. Il leur restera 80 m à parcourir. Ils finiront leur parcours au point B.